
Your Sample Request
Fine-L-Kote LED2 Silicone Coating
*=required field
The dielectric strength is material intrinsic property and withstand voltage is surface property which depend on thickness of the material. They can be slightly different for thicker materials, but for conformal coating, the two numbers should be very close or the same. That is because we test coating at 3-5 mils thickness, calculate, then report the value per mil.
Heptane can be used as a thinning agent. Make sure it is anhydrous, so contains as little moisture as possible.
Apply to clean, moisture-free surface. Areas not requiring coating should be masked. Application: Coating may be applied by spraying, brushing, dipping or flow coating. Allow coating to flow around components. Cure: Room temperature cure: A 1.0 mil coating will be tack-free in 30 minutes. Full cure requires 24 hours @ 74˚F (23˚C). Heat cure: 30 minutes @ 90˚F (32˚C) then 100 minutes @ 199˚F (93˚C). An open vessel of water placed in the drying chamber will facilitate curing. UV detectable for QC inspection. Removal: Coating may be removed by soaking in Electro-Wash® Two Step Cleaner Degreaser. Use CircuitWorks® Conformal Coating Remover Pen for spot removal. After the new component is installed, areas should be cleaned and recoated.
In almost all cases, the cloudy or milky cure comes from coating in higher humidity conditions. The white foam (from an aerosol) is caused the same way. We have the following suggestions: 1) If possible, allow the substrate and coating material to come to approximately the same temperature when applying. 2) Avoid applications in RH > 60%. High humidity ranges will discolor some coating resins and will start curing others. Besides the aesthetic value, it certainly may affect adhesion to the material. 3) Specifically on the silicone coating, if the resulting application is foamy, increase the focal point of the can, ie back off to about 10 -12” from the substrate & make 2 -3 light passes rather than one heavy pass to coat the board.
Wet film thickness = Sq. ft. per gal. | 0.1 mil = 16,040 | 0.5 mil = 3,210 | 1 mil = 1,600 | 2 mil = 802 | 3 mil = 535 | 4 mil = 401 | 5 mil = 321 | 6 mil = 267 | 7 mil = 229 | 8 mil = 201 | 9 mil = 178 | 10 mil = 160
Metal 5-gallon and 55-gallon drums are compatible with standard 3/4" and 2" spouts. Ideally use 3/4" for 5-gallon, 2" for 55-gallon.
The shelf life of a product can be found on either the technical data sheet (TDS), available on the product page, or by looking on the certificate on conformance (COC). The COC can be downloaded by going to https://www.techspray.com/coc. Once you have the shelf life, you will need to add it to the manufacture date for a use-by date. The manufacture date can be identified by the batch number. The batch code used on most of our products are manufacture dates in the Julian Date format. The format is YYDDD, where YY = year, DDD = day. For example, 19200 translates to the 200th day of 2019, or July 19, 2019. This webpage explains and provides charts to help interpret our batch numbers: https://www.techspray.com/batch-codes.